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1. INTRODUCTION

Above 100 kmn the infrared (IR) radiation from 2 -5011 emitted From

rocket and missile plumes may be produced largely from hiighi velocitY Molecular

collisions between JR-active exhaust-exhaust and exhaust-atmospheric spec it'

At higher altitudes these JR-signatures are dominated by the Latter processi

the predominant atmospheric species being atomic oxvgen. Since these intevr-

actions occur with high relative energies, collisions betAween atoic Xgi

and exhaust species such as HIF, H 0, and CO mav result inl excitatioun, rcact ionl,
2' 2

or dissociation processes. In the present work we will be concerned Only with

nonreactive excitation processes.

At present, laboratory data exists onlyV for vibrational exci tat ion ii

c09 (1,2) by N2), 02 and Ar and 112(0(3 by N2  There hias been one, f iii I mesue

ment of a high attitude infrared exhiaust plume signature from whiicli an exe iti
(4)

tion cross sect ion for H,,0 and CO.) (by 0-atoms) has been et rete'Wd. 1)ue to
(5 )the complexity, the only tlieore~t ical Work onl thle vi brat i Oall cXc 1itt I 1".

CO2 by 0 has considered CO 1) a a i ato cmi c mol1ecui ce

The present work represents an i nit i a I -01\l Of tihe t lieu ret i C a 1claacIo

zation of excitation cross seCLiLonS of H 0 anld CO., ill Collisions witii aI
2

structureless particle, i.e.,

(1) Subbarao, R. , Fenn, J.B. , and Kolb, C.E., J. (lieni. Phvs. to be submitted.

(2 2 Rahbee, A., Gibson, J., and Dolan, C., private, colmiiicationl (1980).

(3) Dunn, M.G. , Skinner, G.T. , and Treaor111, C.F., AtAA J. 1-3, 801 (1975) .

(4) McIntvre, A., Gersh, N.E., Wfieler, N.B..* Fraikel , D.S. , anid 1:1gin. .P.,
private commnication (1979).

(5) Bass, J.N., 3. CThem. Phys. 60, 2911 (19/4).



M + H 20 - M + H20)

and

M + CO2  M + CO2

Although a complete study of the dynamics of these processes is needed,

it has been shown that the qualitative concepts of the information theoretic

approach are quite useful.6 ) We show the results of such a study. We find

that the energy dependence of these cross sections appears to agree quite

well with that from the :ivailable experimental results.

The organization of this work is as follows: Section 2 presents a general

outline of the theoretical methods used, and Section 3 discusses the predicted

excitation cross sections and compares them with existing data.

()For reviews, see (a) Levine, R.D. and Bernstein, R.B., Acc. Chem. Res. 7,
393 (1974): (b) Bernstein, R.B. and Levine, R.D., Adv. At. Mol. Pivs. 11,
215 (1975); (c) Levine, R.D. and Bernstein, R.B., in Modern Theoretical
Chemistry, Vcl. II: Dynamics of Molecular Collisions, ed. by W.H. Miller
(Plenum, New York, 1976), p. 323.
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2. THEORETICAL METHOD

The information theory approach to dynamics is well documented in the

literature(6,7) and will only be outlined here.

The state-to-state cross section for reactants in quantum state n and

products in the final state n' is given by (5,6)

4
u(n -n'; E) = (2 ) (E - E pT (E - E2 (1)

2 PTE En) PT( n, nn'~gn kn
nk nn

where E is the total energy, gi and E. are the degeneracy and energy of the

ith internal quantum level, T nn, is the transition matrix element for the

n - n' transition, k n2 2(E - En)/ 2 with p as the reduced mass, and

PT(E - E.) is the translational density of states for a species in the

ith quantum level, i.e.,

PT(E - E) gi A T(E - Ei) 1 /2  (2a)

with

AT = 3/221/ 23 (2b)

The concept of a "Prior" cross section, labeled o , is that which obtains when

all quantum transitions are taken to be equally probable, i.e.,

T nn = constant (3)

(7) Procaccia, I. and Levine, R.D., J. Chem. Phys. 64, 808 (1976).
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Inserting Eqs. (2) and (3) into (1) yields

o0 (n - n'; E) = B g E - E n /2 (4a)
n

1/2
= B g - Q nn/E T) /  

(4b)

Here, B is a collection of constant factors, the initial translational energy

is ET = E - E , and the energy defect of the transition, Q nn" is given by

Qnn' =(n' + Eo) -(E n + 0o 5

Note that E is the internal energy relative to the zero point level (forn

electronically adiabatic nonreactive processes, Eo = E0,). It is interesting

that on purely kinematic grounds (i.e., no dynamical considerations), the prior

cross section decreases for exoergic (Qnn' < 0) processes and increases for

endoergic (Q nn' > 0) processes.

Now, the true transition cross section will differ from the prior cross

section due to various dynamical effects or constraints. It is the goal of

information theory to predict the "best" form of the cross section consistent

with tile observables of the process. ['his is accomplished by use of the Max-
(6)imum Entropy Principle, which timply stated means that a system proceeds such

that the entropy achieves its maximal allowed value, constrained of course, to

reproduce the independent observables.

Now, the state-to-state cross section may be written in the form

a(n n') = o(n) P(n' n) (b)

where o(n) is the total cross section out of state n and P(n'In) is the condi-

tional probability of scattering into state n' given a reactant in state n,

namely

4



P(n' In) 'j(n -in) (~
Y (n -* n')

n'

If there were only one independent observable, say the average of the varlble

x, then the Maximum Entropy Principle would predict the form (6,7)

P(n'in) = P°(n' In) exp(-A - Ax) , (8)
0

where X and A are Lagrange multipliers. P0 (n'In) may be obtained via Eq. (7)
0

with o replaced by oo.

For the present, we assume that in an inelastic cellision process there i.

only one independent observable which is the average absolute fractional unerLv

transferred. That is,

x = In' - fnI = IAfj

with

f = E /E, (9)n n

and therefore,

c(n n') = A u
°(n- n' )e-

Z o 0 (n - n')

n'

where A o(n) exp(- 0). Of the two unknown constants in Eq. (10), A and ,

typically A is a slowly varying function of energy and the majority oI the

energy dependence of o is contained in A. We assume A to be independent of
(7)

energy. The parameter ) will be determined by a procedure known as the Sum Rule.

The concept of the Sum Rule is as follows: The average fractional cnergyv

transferred from an initial state n is given by

5



Ij

<Af> = Af P(n'in) (1)

nf

Now when n is the lowest state, E , > E for all n' and thu. If> > 0. Heren
the system tends to gain energy per collision. When n is the highest state

allowed for the given E, E , < E for all n' and thus <Af><0 and the system

tends to lose energy per collision. Clearly, for some n, say n (perhaps not

integral), <Af> = 0. That is, when the initial energy is E- , the average -

n
energy transferred is zero, the system neither tends to gain nor lose energy

(7)per collision. Following the lead of Procaccia and Levine, we assume that

E - is the microcannonical equilibrium value corresponding to an average over
n

E n, namely

E- E 1 2 f(nIE)] 2 (12a)n n n

where

f(nE) = (E - E n n n(12b)

Therefore, using Eqs. (4-12), A(E) is obtained from the solution of

0 =- Z Af g n,(E - E n) 1/2 e- Af (13)

nn

When there are two degrees of freedom, say n I and n), then the probability

of energy transfer from nIn 2 to nl'n 2' may be written as

P(nl'n 2 'Inln 2 ) = P(nl'nln 2 ) P(n2' nl'n 1 n2 ) (14)

6
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where the second term is the probability of ending in n2' given a particular

ni'. The first term is simply

P(n l 'ln l n 2 ) = 2: P(nl'n 2 'Inln 2 ) . (15)
n 
2

The energy transfer variables corresponding to this division are

Af = Eni 1Enl (16a)

E E

and

En 2  En 2

Af = E E E -E (16b)

Thus A i Isthe fractional energy transferred to the nI degree of freedom and

Af2 is thefractional energy transferred to the n2 degree of freedom given the

n initial and final states.

The state-to-state cross section is then given by

u(n1n2  n1 'n2') = (n1n2) P(n1'n2 '1n1n2)

g tg ,(E - E n - 1E /2 e-AlAfl - A2 IAf2I1 g 'n2 nl n 2'  (17)

g , (E- E E )1/2

ni n' 2 1  n2  1  2

7

nl~n2,gnl'gn

* A.



Corresponding Sum Rules are given by

0 = -, AflP(nl 'i 2 )
nI I1/2 

- llAfl l

Z Afg ,gn2, (E E n En ,) e (18)n;' n 2n - '-E2

and

0 = Z P(n1 ' IWif 2 ) Af2 P(n 2 'In,'Wl? 2 )n1 n2'

Af2  ,gn (E- , ,)1/2 e (19)
ngfno 1  2n 1  E 2

1 2

In Eqs. (18) and (19),

E E.

Af - (20a)
E E

and

Af E-E E (20b)

The generalization to an arbitrary number of degrees of freedom is straight-

forward and will not be presented here.

8



3. EXCITATION CROSS SECTIONS

The only information needed to apply the method of Section 2 to a

particular system is a model for the energy levels. For the present treat-

ment we will uncouple all vibrational modes. Moreover, due to the computational

time involved in molecules such as CO2 and H20 with many internal degrees (d

freedom, we will assume that hot bands do not play a role in the resulting

2 mods ar adiaaticwith respect to 3spectra. That is, the V1 and v modes are adiabatic i a

excitation. As will be seen at least for CO2this is not a severc limititi,,. 1

It should be ncted, however, that the present treatment may b extended to

include all degrees of freedom. Our model is in effect placing additional

constraints on the system.

The energy level scheme adopted for CO is

E. Be j(j + 1) , (21b)

and for H2 0

22

E V =W3 (v + ) + (1 3 X3 3 (V + !) (22a)

E. = (B +C) j (j + ) (22b)
j e e

The spectral constants used are given in Table I.

9
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TABLE 1 - SPECTRAL COEFFICIENTS(a) FOR CO2 AND H20

CO2  H20

03 2396.4 3935.6

x33 - 12.63 - 46.37

B 0.39163 14.575
e

Ce 9.499

(a)Energies in Units of cm-1

Employing Eqs. (18) and (19), Xv and X. may be obtained for CO2 and H 20.

These values are given in Figs. 1 and 2. Total v 3 cross sections are obtained

by summing over final rotational states, i.e.,

o(v3) - (0, 0, 0, 0 -* 0, 0, v3 )

= 0 o(, 0, 0, 0 -+ 0, 0, V3 '' j') (23)

it

(3 = \)') (v3 ') (24) i

v 3 '

10
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Figure 1. Plot of the CO Surprisal Parameters

(Lagrange Mul.tipliers) vs Relative
Velocity.
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M f2 0 M + H 2 0(v 3)

A

001
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Figure 2. Plot of the H 0 Surprisal Parameters
(Lagrange Multipliers) vs Relative
Velocity.
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This quantity is of prime interest ill the Id1 UIL signature since at high

altitudes the meanfree path is long enough to ensure compl ete radiative

relaxation.

Figures 3 and 4 show plots of the calculhated energy dependlent cross sec-

tions. Solid and dashed lines show an arbitrary smoothing inl regions which

seem unphysical. The magnitude of the present cross sections were choseti to
(1,3)

agree with experimental values- at relative veloc it ies shown by vertical1

arrow. Unfortunately, 1190 excitat ion cross secti lOOs have only been obtained

at one relative velocity eliminating further comparison at this time. The

curves labeled "PREVIOUS (i " represent cross sect ions ofitained byv the author
p(8)using a less exact treatment. I'lese previous resuilts have been superseded

by the present cross sections.

Experimental CO., exci tat ion c ross sect ions are bet ter knowrn. Stibbarao

et al. ()have measured what are probably (0 - 1) ab! 'excitation cross

sect ions and Rahibee et al. ()have measured relati cc (t0 ' ) CXCi at in cr'kSf

sections. Figure 5 shows a log (o vs. E comparison oC the present k'xvoNx io

with the Subbarao et al. data (points). Open circles indicate less actirate

data. ALl experimental data is shown for comparison onl a linear plot in

Fig. 6. It is noted that u 1)seems to lie a bet ter fit to the data. Holvvu-u

the experimental. configuration is such that at most one photon per exc [tot ion

collision may be detected.

In conclusion, it should be noted that the theory presented here Xtmi

the current literature and thus more research is necessary (bothI expt-r imtil:

and theoretical) to understand any restrictions, wihi must he consiord.

However, these results are certainly encouraging.

Cersh, M.E. , Elgin, I1., Faist, M. , and fBernstein, L.S. , ''hivgh Altitude
Rocket Plume Rndiat ion Caictilat ions,'' Presented at AP'CI. High Altituode
Plu mme Workshop, Hianscom AFBt, MA (1978).

1 3
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